

# Field-scale evaluation of the oil remediation capacity of the legume Galega orientalis

Lijuan YAN1 Miiro JÄÄSKELÄINEN1 Petr1 PENTTINEN1 Tuula PUHAKAINEN2 Kristina LINDSTRÖM1 Asko SIMOJOKI2 Fred STODDARD2

Departments of 1 Food and Environmental Science; 2 Agricultural Sciences; University of Helsinki, Finland

## **Background**

•Glasshouse-based experiments have shown:

- Biological activity associated with Galega roots accelerates the degradation of oil contamination
- Plant growth promoting bacteria (PGPB) improved nodulation and plant yield
- •This needed to be confirmed in the field
- •Grass-legume mixtures often out-yield their components, and grasses have different rootassociated bacteria
- •Hence a multi-year trial was prepared using the legume *Galega orientalis* (forage goat's rue) and the grass *Bromus inermis* (smooth brome), singly and in combination, to remediate oil-contaminated soil
- •This offered an opportunity to measure  $\rm N_2O$  release

### Aims

- •Determine plant responses to the stress
- •Follow changes in the bacterial community structure
- •Determine the effects of the crops and treatments on N<sub>2</sub>O release



Layout of the experiment, photographed in November 2010. Four replicates I-IV of 4 main plots (Galega, Bromus, Mixture, Bare soil) each of which has 4 subplots of ±0 (oil) and ± B (PGPB) in factorial combinations

# **Materials and methods**

Plots were established in June 2009

- •Galega orientalis cv Gale
- •Bromus inermis cv Lehis
- •Singly, in 75 grass:25 legume ratio, or bare soil as main plots in Randomized Complete Block Design
- •Subplots  $\pm$ fuel oil (6 kg per plot, 7000 ppm),  $\pm$  PGPB, in factorial combinations
- •60 kg/ha N fertilizer was given to the grass plots in 2009 but none subsequently
- Soil samples taken 4 times: A: July 2009, B: May 2010, C: November 2010 and D: May, 2011
- •Top soil (0-20 cm) passed through 5 mm sieve and stored in -20 °C freezer before analysis
- •DNA extracted using standard techniques
- •Soil bacterial community structures studied by length heterogeneity PCR (LH-PCR), using domain specific primers to amplify 16S rDNA (Mikkonen *et al.*, 2011).

Gas traps were installed in May 2011 on -oil-PGPB plots

- •Samples were taken 6 times during 2011
- $\bullet N_2O$  content of the collected gas was determined by GC

#### Results

#### Plants

- •In 2010, plant dry matter production was greatest in the crop mixture plots and in the +Oil +PGPB treatment
- •In 2011, there was no significant difference in plant DM production among the main plot or subplot treatments
- •% Galega in the mixtures declined through each growing season but recovered in spring

#### Bacterial community structure



 At the start of the experiment, LH-PCR fragment lengths differed greatly between oil and no-oil plots, but showed few differences between crops

#### Bacterial community dynamics



- Multi-dimensional scaling ordination separates the LH-PCR profiles of bare soil (yellow), Bromus (green), galega (blue), and mixture (pink) (non-PGPB treatment only)
- Oil-treated plots at times A and B are clearly separated (red rings) from non-oil plots
- By time C, the oil plots cluster with the nonoil plots
- · At time D, all treatments have shifted

#### Greenhouse gas release



- N<sub>2</sub>O release was greatest from the bare soil except at the start of the season
- N<sub>2</sub>O release from the Galega plots exceeded that from the grass and mixture plots
- Grass plots were not fertilized in 2011

# Conclusions

- •After the first year, yields were not affected by oil or bacteria treatments
- •Changes in bacterial community structure followed oil contamination
- •These alterations reduced with time
- •The soil bacterial community can recover from oil contamination
- •N<sub>2</sub>O emission was very high from the fallow plots. Unfertilized grass released little N<sub>2</sub>O
- •Harvested biomass can be used for biomethane production





